找回密码
 注册
查看: 2387|回复: 0

航空发动机百年精华回眸(三)

[复制链接]
发表于 2003-8-20 13:55:14 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
  
推动发展的基础在于技术突破
为在航空发动机市场竞争中取得优势,美国和欧洲都在实施航空发动机研究和发展计划,如美国的IHPTE计划、欧洲的先进核心机军用发动机计划,其目标是验证21世纪的发动机的推重比达20、耗油率降低30%~40%和成本降低35%~60%的发动机技术。
    另外,一些发动机公司也在实施发动机研究计划,以便通过这些计划将获得的新技术直接用于改进现役发动机和研制新发动机,如GE公司的TECH56计划和MTU/罗-罗的3E计划等。
    风扇/压气机技术
    风扇/压气机的设计从早期的二维和准三维已发展到现在的全三维设计。采用全三维设计程序使压气机的级压比从早期的1.1~1.2提高到1.454,研究中的达1.56~1.6。而使用中的风扇级压比达1.5~1.7,研究中的达2.2~3.2。提高级压比,就可提高总压比,这不仅可提高发动机性能,而且可减少压气机级数、简化结构和减轻重量。
    欧洲包括罗-罗在内的4家制造商和4个大学研究的先进三维压气机转子叶片设计,能以较少的叶片排达到较高的压比,并为多级轴流压气机探索了先进的三维粘性稳定和非稳定方法。通过控制内流流场,特别是叶尖、端壁区和叶片排之间的相互影响,能使性能大为改善。
    针对高涵道比涡扇发动机,国外发展了三代宽弦风扇叶片。
    第一代用钛合金板料和蜂窝芯经过扩散钎焊制成宽弦无凸台风扇叶片。
    第二代采用钛合金三层结构的超塑成形/扩散连接工艺制成,风扇叶片芯部采用三角形桁架结构,取代了第一代的内部蜂窝芯,这种三角形桁架结构不仅轻质,而且能承力,每片叶片重量比蜂窝芯叶片轻15%。
    普惠公司在研究连续碳化硅纤维增强的钛基复合材料宽弦风扇叶片,称为第三代宽弦风扇叶片,它可使发动机风扇再减重约14%;GE公司在GE90上进行了高韧性环氧树脂复合材料宽弦实心风扇叶片的研究,这种叶片抗颤振性能、抗鸟撞能力和低噪音指标都达到适航证的合格标准。
    近年来整体叶盘结构在风扇/压气机上得到广泛应用。这种结构是将叶片和盘采用电化学加工、电子束焊焊接或线性摩擦焊工艺加工成一体,省去常规的叶盘联接的榫头和榫槽,大大简化结构,使重量减轻约30%。
    燃烧室技术
    燃烧室经历了从早期的环管燃烧室到环形燃烧室再到短环形燃烧室的发展过程。由于发动机性能不断提高,燃烧室出口温度也在提高,其温升由现有的1100K左右提高到1350K~1450K。
    为达到高的燃烧效率和均匀的温度分布,先进的燃烧室普遍采用:双旋流的空气雾化喷嘴或带旋流的预混喷嘴,如F120的燃烧室;具有三维紊流度的强旋流结构,如F119的燃烧室燃烧区;采用蒸发管的头部回流结构,如EJ200发动机的燃烧室。
    研究中的多旋流器的头部方案,头部由三圈在周向错开排列的喷嘴和旋流器组成,这种方案的特点是长度短、出口温度分布均匀和所需冷却空气量少。
    在冷却结构和耐热材料方面,浮壁和多斜孔结构已发展成熟,用Lamilloy多孔层板制造的火焰筒已得到试验验证;用陶瓷纤维或碳纤维增强的陶瓷复合材料和碳-碳复合材料正在试验用作火焰筒材料,其允许壁温能达到1750K。
    就民用发动机而言,控制燃烧室的排放物,特别是NOx的排放的要求越来越严格。为此发动机制造商都在研究低污染的燃烧室。
    GE公司研究了双环腔燃烧室,其NOx可降低30%以上,GE90采用双环腔燃烧室后,其NOx排放减少了40%。
    普惠公司研究了前后分区的燃烧室用在V2500后,其NOx比采用常规燃烧室的V2500的低25%;罗-罗公司研究的“第5阶段”燃烧室技术可使NOx排放比1996年规定的标准低20%~30%。GE公司还在研究可使NOx再降低30%的单环腔低污染燃烧室。研究中的低污染燃烧室还有:分级燃烧室、贫油预混合/预蒸发燃烧室和富油燃烧/快速掺混/贫油燃烧燃烧室、变几何燃烧室等。
    罗-罗、斯奈克玛和透博梅卡公司等在研究燃烧的计算流体动力学。通过这项研究建立燃烧过程的物理模型,以便了解燃烧过程的物理现象;对模型进行验证试验,并将试验结果与数字预测结果进行比较,所得研究结果可为燃烧室设计提供依据。
    近来普惠公司在IHPTET
计划下又在全环形燃烧室试验件上验证了涂有SiC/SiC陶瓷基复合材料涂层的浮动瓦片和冲击气膜冷却技术。
    SiC/SiC陶瓷基复合材料涂层是一种强化技术,能防止瓦片腐蚀,提高瓦片承受高温的能力,延长瓦片寿命,冲击气膜冷却技术可使浮壁燃烧室在高温高油气比下工作,产生小的温度分布系数和好的温度剖面。
    涡轮技术
    上世纪60年代,涡轮进口温度约为1300K,主要采用简单的对流冷却技术;到70年代和80年代投产的推重比8一级的发动机,涡轮进口温度提高到1640K,其冷却方式主要是对流加冲击或对流加气膜,推重比10的发动机涡轮进口温度达1850~1950K,且高低压涡轮都为1级,其冷却方式为在常规金属上采用多通道强迫对流加气膜的复合冷技术,再加隔热层。
    目前研究中的技术有普惠公司开发了简单冷却通道的“超冷”系统,GE公司开发了内部增强冷却的先进冷却技术,罗-罗公司开发了壁冷的温控系统,虽然工艺复杂,但是传热性能好,现已用于遄达800系列发动机的高压涡轮叶片上。
耐研磨封严装置将对未来航空发动机的效率、油耗、出口燃气温度和寿命期费用有重要影响。采用先进的高温涡轮封严技术可减少冷却空气量、发动机检查间隔和修理费用。
    罗-罗和意大利费亚特公司等合作设计和制造了能承受1470K温度和寿命为36000小时的耐研磨的封严装置。
    在涡轮气动设计方面的研究重点是复合弯扭叶片和无级间导向器的对转涡轮。
    由于三维涡轮部件中复杂的传热问题、复杂的分离流和冷却方案,为此,研究如何提高涡轮端壁的热负荷和级负荷,以便获得先进的涡轮端壁和转子叶片的高气动热力负荷设计方法和技术,高作功能力和低摩阻叶型也是研究的重点。
    另外,在涡轮材料方面,采用粉末冶金涡轮盘、涡轮叶片隔热层和抗氧化涂层以及单晶涡轮叶片都是近年发展的用于涡轮的新材料。金属间化合物涡轮叶片也是研究中的新材料,这种材料可以在减轻涡轮重量的条件下提高部件效率和耐温能力。
    推力矢量喷管技术
    美国军方和NASA从70年代开始就实施二元推力矢量喷管计划,GE和普惠公司也分别开展加力偏转喷管和二元收敛-扩散喷管研究。
    目前已得到验证的技术有:低探测性的轴对称推力矢量喷管,其可探测性与二维收-扩式推力矢量喷管相似,但重量轻50%、成本低60%和零件数少300个;球面收敛调节片喷管在发动机上通过了地面验证,具有俯仰/偏航推力矢量和反推力功能,重量减轻20%。正在研究中的射流控制推力矢量喷管是其发展方向。
    控制技术
    早期发动机的控制系统均为液压机械式系统,其控制参数少。
    现代航空发动机的控制参数增加,要求控制器有更大计算能力、逻辑功能和高的控制精度。因此,全权限数字式系统(FADEC)在发动机上得到广泛应用。
    目前发展了三代FADEC。在第一和第二代的应用中,为保证可靠性,还采用了备份的机械系统。
    F119上采用的第三代FADEC取消了机械备份系统。该系统可进行模块重构,对发动机进行故障诊断和处理,并能根据飞行状况确定发动机的最佳工作参数。
    美国正在进行一项未来先进控制技术研究,目的是使控制系统实现小型化、综合化、高性能、高可靠性和低成本。
    降低噪声技术
    发动机的噪声主要有风扇/压气机噪声、涡轮和燃烧室噪声及喷气噪声。高涵道比发动机的噪声源主要是风扇。
    目前,降低噪声的主要措施包括:降低叶尖切线速度、选择合适的转子叶片/静子叶片数和合适的间距;在发动机短舱上采用衰减声波的吸声材料;提高涵道比,使发动机排气速度和风扇叶尖速度降低;采用声学衬垫和长整流罩等。



您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部 返回列表