找回密码
 注册
查看: 2780|回复: 4

渐近理论

[复制链接]
发表于 2003-12-19 10:51:47 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
请问有谁用过渐近理论的方法来求解物面上的源汇分布问题,并且它的外部解、内不解是怎么回事?在那些地方可以查阅到渐近理论的相关资料?
发表于 2003-12-21 11:07:02 | 显示全部楼层

渐近理论

就是摄动法吧
 楼主| 发表于 2003-12-21 15:56:15 | 显示全部楼层

渐近理论

非常感谢楼上兄弟的参与。
  摄动理论是可以求解的,只是因为小弟前不久看到一篇文章用到此方法来求解,但有点看不懂。因此,想看看基本的东西。不知那位大虾看到过这方面的文章,请指点一下。
 楼主| 发表于 2003-12-21 15:58:47 | 显示全部楼层

渐近理论

用的是摄动方法,但求解势函数时用的是渐近理论。
发表于 2004-1-8 12:03:00 | 显示全部楼层

渐近理论

If we expand a function f(x) into a CONVERGING series by a perturbation method, say,
f(x) = f_0 + f_1 + f_2 + f_3 + f_4 + … + f_200 + f_201 + f_202 + … + f_n + …,
f_n will rapidly approach 0 as n approaches infinity (because it is a converging series). However, it will not help very much in practice if the major contributions to f(x) come from the middle terms, say, from f_200, f_201, and f_202, rather than from the first few terms, say, f_0 and f_1. The asymptotic expansion is a special perturbation method of the important property that the leading term is roughly correct and further terms are corrections of decreasing size.
A brief and concise textbook on both the asymptotic theory and other popular perturbation methods is:
Hinch, E. J., 1991: Perturbation Methods. Cambridge Univ. Press, Cambridge, 160 pp.
您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部 返回列表