找回密码
 注册
查看: 7407|回复: 8

[转帖]普朗特生平(1875-1953)

[复制链接]
发表于 2006-3-18 00:29:27 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
[这个贴子最后由周华在 2006/03/18 00:58am 第 3 次编辑]

Ludwig Prandtl';s contributions to fluid mechanics include his development of lifting line theory (to describe the lift and drag of wings of finite span), his work in turbulence, and his experimental and theoretical studies of gasdynamics. Prandtl was trained as a solid mechanist and continued to contribute to solid mechanics throughout most of his career. However, his discovery of the boundary layer is regarded as one of the most important breakthroughs in fluid mechanics of all time and has earned Prandtl the title of Father of Modern Fluid Mechanics.
Before Prandtl';s description of the boundary layer in 1904, there was no lack of interest in the dynamics of fluids due to the practical problems of nautical engineering, ballistics, and hydraulics. Throughout the 18th and 19th century the top physicists and mathematicians of Europe examined flows from a mathematical point of view. Much of this work was to construct potential flows, i.e., incompressible, irrotational flows, over bodies. Examples recognizable to most undergraduates are flows over circular cylinders and other flows involving source-sink superpositions. Although the mathematics was elegant and the flows aesthetically pleasing, it was recognized that such flows failed to mimic "real" flows seen in nature. Furthermore, it was known since the time of d';Alembert that potential flows frequently resulted in zero drag; a prediction in clear contradiction with everyday experience!
What were these mathematicians to do? Thanks to Coulomb and Stokes, they were aware that a no-slip condition should be applied at solid bodies (we now realize that this condition holds at all fluid boundaries). However, standard external flow problems are ill-posed when the potential flow equations are combined with the no-slip condition. The correct approach would be to abandon the inviscid (small viscosity) approximation and solve the full Navier-Stokes equations. Stokes had done this himself for the problem of creeping flow around a sphere and derived a non-zero expression for the drag. However, the Stokes flow does not generate the large scale separation seen in most day-to-day flows and the predicted drag is always much less than what is measured for things like cannon balls and marbles in air and water. The reason for these discrepencies is the neglect of the fluid inertia in the creeping flow approximation. To include these terms is a daunting task, even today.
Thus, as the 19th century came to a close, a universal and practical application of fluid mechanics seemed far off. Prandtl';s contribution was to realize that we can view the flow as being divided into two regions. The bulk of the flow can be regarded as a potential flow essentially the same as that studied by the mathematicians. Only in a small region near the body do viscous effects dominate. This thin layer is known as the boundary layer. Conceptually, Prandtl';s boundary layer is the reason the potential flow theory is compatible with the exact physics. Furthermore, certain details of the structure of the boundary layer are the key to understanding both flow separation and the physical mechanism behind the Kutta condition. That is, a proper understanding of the boundary layer allows us to understand how a (vanishingly) small viscosity and a (vanishingly) small viscous region can modify the global flow features. Thus, with one insight Prandtl resolved d';Alembert';s Paradox and provided fluid mechanists with the physics of both lift and form drag.
We should also note that the boundary layer is the region where the solid interacts mechanically and thermally with the surrounding flow. A practical spin-off of Prandtl';s recognition of the boundary layer is the understanding of the mechanisms of skin friction and heat transfer.
Prandtl';s place in history would have been secure with the discovery of the boundary layer alone. However, he also developed lifting line theory (along with Lanchester) which revealed the third source of subsonic drag, i.e., induced drag. This work, along with that of Max Munk on airfoil theory, gave engineers reasonably efficient tools to understand and improve the earliest aircraft in the pre-computer age. Without Prandtl';s insights, the progress of manned flight would have been slowed considerably.
Amazingly, there are very few discussions of Prandtl on the web. He is regarded as an engineer and never seems to make it into lists of physicists.  

转自:http://www.fluidmech.net
发表于 2006-3-18 13:47:51 | 显示全部楼层

[转帖]普朗特生平(1875-1953)

早就听过找个大师的名字,呵呵 今天才看到他的简历
发表于 2006-3-18 20:42:56 | 显示全部楼层

[转帖]普朗特生平(1875-1953)

边界层理论、升力线理论、混合长理论,有这三个理论中的一个就够名垂青史的了,何况三个!
发表于 2006-3-20 09:03:02 | 显示全部楼层

[转帖]普朗特生平(1875-1953)

他的学生卡门(美国人,钱学森的导师)也很厉害,
发表于 2006-3-22 20:20:30 | 显示全部楼层

[转帖]普朗特生平(1875-1953)

看见过普朗特,冯卡门和钱学森师生三代的合影照。要想成为大师,
就得师承大师,并且让大师看得出将来具备大师的潜质才行。绝大多数人
只有跟随大师了,很难超过。
发表于 2006-5-30 09:33:35 | 显示全部楼层

[转帖]普朗特生平(1875-1953)

他还有一女弟子叫陆示嘉,也是很了得的人物
发表于 2006-6-6 16:28:01 | 显示全部楼层

[转帖]普朗特生平(1875-1953)


冯卡门的师妹,普朗特唯一女弟子

厄运多磨 年少志坚
  陆士嘉,1911年3月18日出生在江苏省苏州市一个旧官僚家庭里。在她
出生不到6个月时,她的祖父母、父亲均遭山西军阀阎锡山杀害。这突如其来的家
庭变故使家中生活发生困难,其母心情不好,又有重男轻女的思想,只能把她寄居
在叔叔家中。由于长期过着寄人篱下的生活,使她精神上常常感到孤独和苦闷。在
这种环境下,她自幼养成了坚强的性格、抗争的精神和独立生活的能力。
  12岁时,她在北京师范大学附中就读初中,由于受进步教师的影响,她遍读
了大量鲁迅的著作,尤其喜爱读杜甫、白居易等反战和反映人民苦难生活的诗词;
参加了“沪案”的街头宣传募捐和三一八惨案时学校组织的游行,以及北京师范大
学殉难同学范士弼、刘和珍的追悼会。她憎恨日本帝国主义的侵略行为,也对当时
政府的腐败无能感到非常痛心。另外在读了介绍居里夫人的书籍后,对这位女科学
家热爱祖国、献身科学的崇高志向极为钦佩。
  1926年,她考入北京师大女附中高中,并选择了理科。在完成高中学业前
,她的叔叔以经济拮据为由,表示高中毕业后将不再供她上大学,同时还要求她与
国民党一位部长的儿子订婚。陆士嘉坚决拒绝了叔叔欲包办她婚姻的要求,并立志
要靠自己的力量上大学读书。1929年,她考入不收学费的北京师范大学物理系
,靠半教学半读书维持生活和学习,直到坚持完成4年学业。
师承名教 孜孜以求
  大学毕业以后,为了奉养母亲,陆士嘉曾先后在河北大名第三女子师范学校和
北京志成中学教了4年书,但是渴求留学深造以改变祖国科学技术落后面貌的强烈
愿望,仍时时促使她勤奋读书。在学校教书时,虽然她每周要为学生上24个小时
的物理课,还要准备实验课、批改作业,工作量很大,但她始终坚持每星期日到北
京图书馆看书学习。
  1938年,她克服重重困难,进入了德国哥廷根大学学习。当时,闻名世界
的近代流体力学奠基人L.普朗特(Prandtl)教授在该校执教。她想到祖
国正在遭受日本帝国主义的轰炸、蹂躏,学航空将来能对祖国有贡献,便毅然选择
了航空科学,并决心做普朗特教授的研究生。但是,谈何容易?一方面,由于那时
的中国正处在半封建半殖民地时代,中国人在国外到处受欺凌、被人看不起;另一
方面,普朗特教授从来不接受女研究生,也不愿意接收处于落后地位的中国学生,
当然就更不愿意接收中国的女研究生了。因此,她理所当然地被拒之门外。年轻的
陆士嘉很不甘心,她不能让外国人瞧不起中国人,更不能容忍他们看不起妇女。她
抱着“外国人看不起中国,我就一定要为中华民族争口气”的信念,向普朗特勇敢
地提出考试要求,并表示:“如果我考试成绩不好,我决不乞求。”面对这位有强
烈民族自尊心的倔强而聪慧的中国姑娘,普朗特只得同意她参加考试。陆士嘉的考
试成绩之好使普朗特深感意外,于是他破例地收了一名中国学生。陆士嘉成为普朗
特正式接收的唯一的一位中国留学生并且是一位女博士生,同时,也是这位著名教
授的关门弟子。普朗特教授是一位正直的不赞成纳粹行为的知识分子,他被陆士嘉
的爱国思想和刻苦顽强的学习精神所感动。他们之间几十年来一直保持着良好的友
谊。
  陆士嘉在哥廷根大学学习时,正值第二次世界大战之际,该校的空气动力研究
所对中国留学生有种种苛刻的限制,尤其在实验技术方面对她更是严格保密,加上
生活条件艰苦,她在整个学习过程中困难重重,并且需不断战胜许多作为一个只身
在异国他乡的女孩子所意想不到的困难。尽管如此,她并不沮丧,她用严密的理论
方法处理了一个复杂的流体力学问题,所得结果竟然与空气动力研究所的实验结果
完全吻合。至此,她完成了《圆柱射流遇垂直气流时的上卷》的论文,获得了哲学
博士学位。她的卓越才能受到导师的称赞。她还获得了洪堡奖金,她的成功为中国
人民争了光,也为中国妇女争了气。
  1942年,在攻读研究生毕业后,她曾先后到柏林高等工业学校任助教和在
萨克逊堡造船厂的柏林设计研究部任研究工程师。1944年初,因该研究部被轰
炸,她不得不离职。以后在导师普朗特的介绍下,又回到哥廷根大学工作。普朗特
本想让她进空气动力研究所工作,但是该所负责人F.里格尔斯(Riegels
)是个纳粹党员,他因陆士嘉坚决谴责日本帝国主义的侵略行径而拒绝其进所工作
。后来,陆士嘉只能在哥廷根大学内另辟一室,单独搞导师给她的课题,而且当时
只让她解方程,并不让她了解方程的由来和作用,为此她愤然辞职,决定尽快返回
祖国。
开拓新路 艰苦创业
  1946年7月回国之后,陆士嘉曾先后在天津北洋大学航空系、清华大学水
工试验研究所任教。
  1949年中华人民共和国成立后,在清华大学的第一次教授会上,军代表宣
布取消原清华大学关于“夫妇不能同时任教授”的不成文规定。第二天,陆士嘉就
收到了航空系教授的聘书。看着这张散发着油墨清香的聘书,她心潮澎湃,深切地
感到中国共产党和新中国给妇女带来了双重解放,为此她暗下决心,要把自己毕生
的精力贡献给祖国的航空事业。
  1952年,中央决定创建一所新型的航空高等学府——北京航空学院。陆士
嘉担任建校筹备委员会委员。建立一所培养航空人才的大学,是她多年梦寐以求的
愿望。建校之初,百事待举,她自己花钱买来一大堆肥皂,和教师们一起制作建校
规划模型——北京航空学院最早的蓝图。陆士嘉是北航第一任空气动力学教研室的
主任,也是建立我国第一个空气动力学专业的主要奠基者之一。从此,她走上了一
条新的开拓之路,并为此付出了巨大的劳动
发表于 2006-7-12 17:16:49 | 显示全部楼层

[转帖]普朗特生平(1875-1953)

牛人....
发表于 2006-7-12 17:47:18 | 显示全部楼层

[转帖]普朗特生平(1875-1953)

很牛!!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部 返回列表